COMONADIC EVALUATION
APPLICATIONS IN CELLULAR AUTOMATA

Madalina Sas (madalina.sas@pm.me)
Advanced Haskell
April 2020

github.com/mearlboro/hascell

mailto:madalina.sas@pm.me
https://github.com/mearlboro/hascell

OUTLINE

Motivation: CELLULAR AUTOMATA

The numbering system: WOLFRAM CODES
Worldbuilding: LiST ZIPPERS

Modelling repeated computation: COMONADS

Future work

HASKELL T OPICS

* Bitwise operations: Data.Bits and Data.Bits.Bitwise
* Integer to/from bitstream representation

* Functors and Lists: the Functor class

* List Zippers

* Monads: Control.Monad

* Comonads: Control.Comonad

USEFUL PREREQUISITES

* Expressions, Functions, and Types
* Lists and List Comprehensions

* Higher-order Functions

* Currying and Partial Application
* Laziness

* Algebraic Data Types

* Classes and Instances

* Knowledge of Functors and Monads is recommended but not essential

RECOMMENDED READING

Paul Hudak, The Haskell School of Fxpression

Bryan O'Sullivan, Don Stewart, John Goerzen, Real World Haskell
Learn You a Haskell for Greater Good, Zippers

Learn You a Haskell for Greater Good, A _fistful of Monads

Stephen Wolfram, Statistical mechanics of cellular automata

Stephen Wolfram, A new kind of science

The libraries are documented on Hackage:
* Data.Bits
* Data.Bits.Bitwise

* Control.Comonad

https://www.amazon.co.uk/Haskell-School-Expression-Functional-Programming
http://book.realworldhaskell.org/read/
http://learnyouahaskell.com/zippers
http://learnyouahaskell.com/a-fistful-of-monads
https://www.stephenwolfram.com/publications/academic/statistical-mechanics-cellular-automata.pdf
https://www.wolframscience.com/nks/
https://hackage.haskell.org/package/base-4.2.0.1/docs/Data-Bits.html
https://hackage.haskell.org/package/bitwise-0.1.1.1/docs/Data-Bits-Bitwise.html
https://hackage.haskell.org/package/comonad-5.0.6/docs/Control-Comonad.html

MOTIVATION
CELLULAR AUTOMATA

CELLULAR AUTOMATA (CA)

* A system of simple, spatially distributed, ¢dentical agents

* Follow rules of evolution over discrete time steps

* Usually interact based on their topology, i.e. the state of one cell is
influenced by the state of neighbouring cells

* Simple models with compler dynamics e.g. chaotic behaviour

* Applications in encryption and computation theory due to their

randomness or complexity

KLt 1’4: 1r11:f4=1'r1; i
I :I]ra-;a-f; f i;]r;

&11;4”-4:1-4:
r;ﬂr;*uu;%m;t
Poifd” 1 t:|.

[Ia- 14: :

2 ‘1’&”‘1{:;% il 1&*::: ,
‘i 3 ’r"f 11“;11 P ’rf i i
£ fl:"'F h £ 1 'I: s -

Elementary Game of Life Excitable Medium
* 1-dimensional * 2-dimensional * 2-dimensional
* 2 states: alive, dead * 2 states: alive, dead * 3 states: excitable, excited,
* 4 ‘classes’ of behaviour * Turing complete refractory

* Brains, hearts, forest fires

&3
2
Z

ELEMENTARY CELLULAR AUTOMATA (.

* Courtesy of Stephen Wolfram
* The simplest cellular automaton:

* 1 dimension

* 2 possible states: 0 and 1
* each cell has 2 neighbours: evolution rules operate with 3 cells at a

time

* Don’t be fooled by its simplicity...

* Some ECA are so non-periodic and chaotic

A f‘lrh:-r‘-_,i-‘;!.r‘g‘ :;_I-j;

E-I";"- o

;;J'j‘:. ...]l'!'ﬁ];";':
'.T"

they can be used to generate random -rg‘
o

;r

numbers for encryption: rule 22, 30, 86, 135

* Some are fractal: rule 90 starting from a

single live cell is the Sierpinski triangle.
Other examples are rule 129, 146, 150, 153

* Some live between order and chaos: rule 110,
124, 137 can be used to simulate any possible
algorithm, like a Turing machine

y ¥ e

Rule 30 Rule 45 Rule 57

Rule 90
Rule 105 Rule 137 Rule 150

* the plots above have been generated using the code presented in this lecture

CREATED OR DISCOVERED?

Rule 30 Conus Textile shell

THE NUMBERING SYSTEM
WoLFRAM CODES

WoLFRAM CODES

* A system of generating all possible CA rules for this configuration
* For each cell n in generation G, its value is computed based on the

values itself and its neighbours had in the previous generation
val(n, G) = f(val(n-1, G-1), val(n, G-1), val(n+1, G-1))

* 22=28=256 possible functions f: {0,1} x {0,1} x {0,1} — {0,1}
* The corresponding Wolfram Code is the 8-bit number with the binary

expansion that represents f

The sequence of 256 possible cellular
automaton rules of the kind shown
above. As Indicated, the rules can
conveniently be numbered from 0 to
255. The number assigned Is such that
when written in base 2, it gives a
sequence of 0's and 1's that correspond
to the sequence of new colors chosen
for each of the eight possible cases
covered by the rule.

___Ji_ Hi EH JI BEIE)N EhGEE EEn
[] [] [] [] [] [] [] []
0 0 0 0 0 0 0 0
i Hj H jI BEE N EhZEE pEEs
[] [] [] [] [] [] [] H
0 0 0 0 0 0 0 l
i1 Hh B I BEIE NN HiEE LEEN
L] L] [] [] [[l [
0 0 0 0 0 0 1 0

H.I
H.!
H.n
H.E
ﬁ.\.i
-
ﬂ.ﬁ

illustration © A New Kind of Science, Stephen Wolfram

255

IMPLEMENTATION: LI1ST COMPREHENSION

* First try: list comprehension

wolframRule :: Int -> [Int]
wolframRule r = [(r “div- 27i) mod™ 2 | i <= [0..7] 1]

* What about datatypes?
* an Int is much bigger than 8-bit word we need (Tip: Data.Word)
* the result is a list of 0 and 1

wolframRule :: Word8 -> [Bool]
wolframRule r = [(r “div- 27i) mod™ 2 '= 0 | i <= [0..7]]

IMPLEMENTATION: BINARY EXPANSIONS

* How do we elegantly turn a 1-bit Int into Bool? The answer is
Data.Bits. Given a number (expressed as an array of bits) and an

integer n, testBit returns the value of the nth least significant bit

testBit :: Bits a => a -> Int -> Bool

* There exists a Bits instance of Word8, which allows us to use Word8
directly with testBit. The :i command will show you all instances of

a datatype

A Data.Word> :i WordS8
instance Bits Word8 -- Defined in ‘GHC.Word’

wolframRule :: Word8 -> [Bool]
wolframRule r = [testBit r i | 1 <- [0..7]]

* The list comprehension is better expressed as a map
* We already know how many bits the Wolfram Code r has from its

data type, so the magic number 7 is redundant

wolframRule r = map (testBit r) [0..finiteBitSize r-1]

* finiteBitSize :: FiniteBits b => b -> Int returns the number of

bits required to represent its input argument

WORLDBUILDING
LIST ZIPPERS

1-DIMENSIONAL UNIVERSE

* An infinite line made of discrete ‘points’ or cells
* We only care about a finite subset of our universe, so we can be lazy
* We could use an infinite list, but then we’d have to traverse it

* For every computational step, focus is on 3 cells only. All
computations are local
* Interested in the idea of local context, rather than global context;

relative positioning rather than absolute positioning

illustration © Flatland, Edwin C. Abbot

LocAL COMPUTATIONS

* Can we write the following global computation as a local computation?
val(n, G) = £ _(val(n-1, G-1), val(n, G-1), val(n+1, G-1))
* Considering a focus cell, c, and generation G:

c,= f_(left(c,,), c,,, right(c,))

ZIPPERS

* A zipper is an idiom that uses the idea of context to the means of

manipulating locations in a data structure

* Idea: a list zipper would have a focus on a certain element and have

two sub-lists, one to its left, one to its right

data W a = W [a] a [a]

NAVIGATING ZIPPERS

* Need to locally navigate the data structure

* Jump left or right, get back the data structure with the focus element
shifted in the respective direction

data W a = W [a] a [a]

left, right :: Wa -> W a

left (W (1:1s) x rs) =W ls 1 (x:rs)
right (W ls x (r:rs)) =W (x:1s) r rs

FUNCTORS

* Remember functors?

class Functor f where
fmap :: (a > b) ->f a->fb

* Functors represent types that can be mapped over

* Must preserve identity and composition

fmap id = id
fmap (f . g) = fmap f . fmap g

[Xl? Xz?

vy

- |

vy

[fx,, fx,,

, Ix

LIisT ZIPPERS ARE FUNCTORS

* [ists are functors:

instance Functor [] where

fmap = map

* Since list zippers are lists with a focus element, functions can be

mapped over the list zipper W using fmap, so they are functors too

instance Functor W where
fmap £ (W 1s x rs) = W (fmap f 1s) (f x) (fmap f rs)

* fmap is needed to apply our evolution rules over each cell

WORKING WITH CONTEXT

* Need a way to extract the focus element from the zipper

extract :: Wa -> a

extract (W _ x) = x

* Evolution rules have the same type: take a zipper with the current
generation of cells, return the next state of the specific cell that is the

focus element

* After applying a rule, the focus cell is taken out of context. Need to

put it back without losing the information about the other cells.

* For each cell: look-behind at a zipper and compute a new value

* For each generation: look-behind at a zipper of zippers, by changing
the focus element to every cell in the zipper, and compute a new zipper

* Idea: a function to wrap the context into another context

* The aim is to obtain the id function when composing the two functions

extract :: Wa -> a extract . wrap = id

wrap o Wa->W (W a) wrap . extract = id
id cr Wa->Wa

* wrap creates a zipper of zippers:

* The focus element is the original

zipper, with its focus element set

* The left and right lists are made
of copies of the original zipper

by repeatedly shifting the focus

element left and right

wrap :: Wa ->W (W a)
wrap w = W (tail (iterate left w)) w (tail (iterate right w))

extract :: W a -> a
wrap c: Wa->W (W a)

Using these two functions, we can now apply a function rule to the

zipper and get back also a zipper

rule :: Wa->a
apply :: (Wa ->a) >Wa->Wa

Take a rule and a zipper that represents the current generation, get a

zipper that represents the next generation:

apply rule w = fmap rule (wrap w)

ADAPTING RULES

* Any rule can be applied on a 8-bit number using its Wolfram Code r

wolframRule r = map (testBit r) [0..finiteBitSize r-1]

* To apply it to a zipper w, construct the 8-bit number represented by

the focus cell and its neighbours

wolframRule r w = testBit r (270 * 1lc + 271 * cc + 272 * rc)

where
cc = fromEnum (extract w)
lc = fromEnum (extract (left w))

rc = fromEnum (extract (right w))

* Need a function like the ‘opposite’ of testBit that returns an integer

given its binary expansion. Found in Data.Bits.Bitwise

A Data.Bits Data.Bits.Bitwise> :t fromListBE
fromlListBE :: Bits b => b -> Int

* extract from the zipper in which the current cell is in focus and the

zippers in which its two neighbours are in focus: left w, w, right w

* The result of extract is a list of Bool to pass to fromListBE

wolframRule :: Word8 -> W Bool -> Bool
wolframRule r w
= testBit r (fromListBE (map extract [left w, w, right w]))

* wolframRule can now be used with apply to create the next generation

generation :: Word8 -> W a -> W a

generation r w = apply (wolframRule r) w

* Can repeat the computation as many times we want, and every time it
returns a zipper. Take the first g computations and get a list of zippers

that represent all generations [0, 1, .. g-1]

experiment :: Word8 -> W a -> Int -> [W a]
experiment r w g

= take g (iterate (generation r w))

INFINITE LAZINESS

* Our one-dimensional world is lazily generated. An initial world, with a
single living cell in the middle, can be (lazily) defined as follows:

wolframWorld :: W a

wolframWorld = (repeat False) True (repeat False)

* experiment produces a list of zippers, but we must truncate them

before attempting to print

truncateD :: Int -=> W a -> W a
truncateD d (W 1s x rs) = W (take d 1s) x (take d rs)

MODELLING REPEATED COMPUTATION
COMONADS

MONADS

* Remember monads?

class Monad m where
return s a —>m a

(>>=) c: ma->(a->mb) ->mb

* A monad encapsulates a value (or values) a inside a context m

* The only way to access the value inside is through a continuation, that
is, by binding it to an operation that accepts a value and produces an

encapsulated value

MONADS ARE FUNCTORS TOO

* All monads are functors. To construct a monad from a functor:

class Functor m => Monad m where

join ::m (ma) ->ma
return :: a -> m a
(>>=) ::ma->((a->mb) >mb

* Now bind (>>=) can be defined in terms of fmap and join:

ma >>= f = join (fmap f ma)

COMONADS

* Compare the list zipper with the monad:

extract:: Wa -> a return :: a ->m a
wrap :: Wa->W W a join ::m (ma ->ma
apply :: Wa->a) >Wa->Wa (>>=) ::ma->((@->mb) >mb

* The list zipper above is the opposite (or categorical dual) of a monad,

and is called a comonad

* The comonad puts forward the value it contains, and requires a
continuation to access the rest of its context, by extending it with an

operation that takes an encapsulated value and produces a value

CLOSING THOUGHTS

* The comonad lives in the Control.Comonad package

* Its ‘official’ function names are extract, duplicate (for wrap) and

extend (for apply)
* Jts full definition derives a Functor

* There are many possible instances of a comonad, which are more

eflicient than infinite lists

PoOSSIBLE IMPROVEMENTS?

* Some cellular automata live on toroidal worlds, which are not

supported by a stream-like infinite list zipper

* Lists need to be traversed in order to save the results of an experiment,

but lists are very inefficient to index — O(n)
* Since the computation is always local, it could be done in parallel

* What would the automaton look like if it were started from a more

random initial configuration?

* How would a list zipper extend to 2 dimensions? Can we use it to

implement Game of Life?

* Can we create a comonad for any number of dimensions?

WHAT 1Ss LIFE?

M
L

a® Eg
an

hrt

- vy O
l“.“"l ﬂl’ vl
bl
b]

i
b
- J

v

3

John Conway’s Game of Life

In memoriam of John Horton Conway, FRS
26 December 1937 — 11 April 2020

